Downregulation of apoptosis-inducing factor in harlequin mutant mice sensitizes the myocardium to oxidative stress-related cell death and pressure overload-induced decompensation.
نویسندگان
چکیده
Apoptosis-inducing factor (AIF), or programmed cell death 8 (Pdcd8), is a highly conserved, ubiquitous flavoprotein localized in the mitochondrial intermembrane space. In vivo, AIF provides protection against neuronal apoptosis induced by oxidative stress. Conversely, in vitro, AIF has been demonstrated to have a proapoptotic role when, on induction of the mitochondrial death pathway, AIF translocates to the nucleus where it facilitates chromatin condensation and large scale DNA fragmentation. To determine the role of AIF in myocardial apoptotic processes, we examined cardiomyocytes from an AIF-deficient mouse mutant, Harlequin (Hq). Hq mutant cardiomyocytes demonstrated increased sensitivity to H2O2-induced cell death. Further, Hq hearts subjected to ischemia/reperfusion revealed more cardiac damage and, unlike wild-type mice, the amount of damage increased with the age of the animal. Aortic banding caused enhanced hypertrophy, increased cardiomyocyte apoptotic and necrotic cell death, and accelerated progression toward maladaptive left ventricular remodeling in Hq mutant mice compared with wild-type counterparts. These findings correlated with a reduced capacity of subsarcolemmal mitochondria from Hq mutant hearts to scavenge free radicals. Together, these data demonstrate a critical role for AIF as a cardiac antioxidant in the protection against oxidative stress-induced cell death and development of heart failure induced by pressure overload.
منابع مشابه
EUK-8, a superoxide dismutase and catalase mimetic, reduces cardiac oxidative stress and ameliorates pressure overload-induced heart failure in the harlequin mouse mutant.
OBJECTIVES The purpose of this study was to identify apoptosis-inducing factor (AIF) as a cardiac mitochondrial antioxidant and assess the efficacy of EUK-8, a salen-manganese catalytic free radical scavenger, to protect the AIF-deficient myocardium against pressure overload. BACKGROUND Oxidative stress has been postulated to provoke cell death and pathologic remodeling in heart failure. We r...
متن کاملUK-8, a Superoxide Dismutase and Catalase imetic, Reduces Cardiac Oxidative Stress nd Ameliorates Pressure Overload-Induced eart Failure in the Harlequin Mouse Mutant
OBJECTIVES The purpose of this study was to identify apoptosis-inducing factor (AIF) as a cardiac mitochondrial antioxidant and assess the efficacy of EUK-8, a salen-manganese catalytic free radical scavenger, to protect the AIF-deficient myocardium against pressure overload. BACKGROUND Oxidative stress has been postulated to provoke cell death and pathologic remodeling in heart failure. We rec...
متن کاملIron Overload Induced Apoptotic Cell Death in Isolated Rat Hepatocytes Mediated by Reactive Oxygen Species
Isolated rat hepatocytes in culture were incubated with different concentrations of iron-sorbitol (50, 100, 150, and 200 µM) to assess the changes in reactive oxygen species (ROS) and lipid peroxidation leading to apoptotic hepatocyte cell death. The viability of hepatocytes was declined depending on the iron concentration. One hour incubation of the cells with 100 µM iron resulted in decreased...
متن کاملIron Overload Induced Apoptotic Cell Death in Isolated Rat Hepatocytes Mediated by Reactive Oxygen Species
Isolated rat hepatocytes in culture were incubated with different concentrations of iron-sorbitol (50, 100, 150, and 200 µM) to assess the changes in reactive oxygen species (ROS) and lipid peroxidation leading to apoptotic hepatocyte cell death. The viability of hepatocytes was declined depending on the iron concentration. One hour incubation of the cells with 100 µM iron resulted in decreased...
متن کاملCorrection: Deletion of the Mitochondrial Flavoprotein Apoptosis Inducing Factor (AIF) Induces β-Cell Apoptosis and Impairs β-Cell Mass
BACKGROUND Apoptosis is a hallmark of beta-cell death in both type 1 and type 2 diabetes mellitus. Understanding how apoptosis contributes to beta-cell turnover may lead to strategies to prevent progression of diabetes. A key mediator of apoptosis, mitochondrial function, and cell survival is apoptosis inducing factor (AIF). In the present study, we investigated the role of AIF on beta-cell mas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 96 12 شماره
صفحات -
تاریخ انتشار 2005